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FOREWORD

It is expected that the method presented in this
paper will prove valuable within the limitations
set forth,

No attempt has been made to formulate a theory
to include the coupling of torsion and flexure
and local buckling.

As an extension and modification of existing

equations, however, it provides a ready tool for
golution of a particular class of problems.

C. E. McCandless, Technical Editor
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Moment of inertia of the section about its shear center (in. )
Shear modulus of elasticity (psi)

Torsion constant (inm4)

Young's modulus of elasticity (psi)

Warping constant of the section (in." )

Effective length of member (in.)

Critical load in pure torsional buckling (1bs)

Critical load in torsional-flexural buckling (1lbs)

Critical Euler load about x axis (1lbs)

Critical Euler load about y axis (1lbs)

Axial load (1bs)

Critical load in combined crippling and torsional-flexural buckling
(1bs)

Moment of inertia about x axis (in.*)

Moment of inertia about y axis (in.*)
Polar radius of gyration about shear center (in.)
1 -(%0\% = Comstant

ot

Yo
Distance from centroid to shear center along x axis (in.)
Distance from centroid to shear center along y axis (in.)

P2, P3 = Roots of cubic equation (1lbs)
A1, A2, A3 = Constants as defined in Section III-C
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SUMMARY

An empirical technique is proposed for predicting failure loads for
centrally loaded columns with thin-walled open cross sections which may
fail by a combination of torsional-flexural buckling and crippling. By
knowing the torsional-flexural buckling load and the crippling load for
a column, one can predict their interaction by a modification of the
Johnson-Euler equation, often used to interact crippling and Euler-type
buckling. Although no test data were utilized for comparison, it is

thought that the technique is an accurate means of predicting failure
loads.,

SECTION I, INTRODUCTION

For centrally loaded columns with thin-walled open cross sections,
which fail at stresses within the elastic range, the critical mode of
failure is often torsiomnal buckling or a combination of torsional and
flexural buckling., The critical mode depends primarily on the geometry
of the cross section and the length of the column., Methods are avail-
able to evaluate this torsional or torsional-flexural buckling load for
many variations of cross-sectional geometry and restraint conditions,
However, all of the present methods of evaluating torsional or torsional-
flexural buckling load are based on the assumption that the cross-
sectional shape does not change during buckling; i.e., the theories con-
sider primary failure of columns as opposed to secondary failure, char-
acterized by distortion of the cross section. The formulation of a
theory which would include coupling of torsion and flexure and local
buckling would be extremely complicated.

For very short columns of thin-walled open cross sections the
failure stress is determined by the crippling stress method, which does
provide for local distortion of elements of the cross section.

Therefore, the coupling of these two failure modes by an empirical
means would provide a simple method to predict failure loads of columns
which may fail by a combination of the torsional-flexural mode and the
crippling mode. This approach has previously been followed in coupling
crippling and Euler buckling for closed sections (Johnson-Euler equation).
The same approach will be used in this report to couple crippling and
torsional-flexural buckling.






SECTION II., CRIPPLING STRESS

When the corners of a thin-~walled section in compression are re-
strained against any lateral movement, the cornmer material can continue

to be loaded even after buckling has occured in some elements of the
section. When the stress in the most stable corners exceeds its critical

value Feritr, the section loses its ability to support any additional
load, and fails.

Figure 1(a) shows the cross-sectional distortion occurring over one
wavelength in a typical thin-walled section. Figure 1(b) shows the
stress distribution over the cross section just before crippling.

Crippling failure occurs at extremely short column lengths. The
crippling load of a member is equal to the product of the crippling
stress and the actual area of the member.

Empirical methods of predicting the crippling stress F.g of extruded

and formed sheet metal elements are readily available in the literature
(Ref. 1, 2).

crit

(b)

FIGURE 1. DISTORTION OF CROSS SECTION AND STRESS DISTRIBUTION FOR CRIPPLING
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SECTION III, TORSIONAL-FLEXURAL INSTABILITY

Centrally loaded columns can buckle in one of three possible modes:
(1) They can bend in the plane of one of the principal axes; or (2)
they can twist about the shear center axis; or (3) they can bend and
twist simultaneously. For any given member, depending on its length and
the geometry of its cross section, one of the three modes will be criti-
cal, Mode (1) is the well-known Euler type of buckling. Modes (2) and
(3) will be discussed below.

A, Two Axes of Symmetry

When the cross section has two axes of symmetry, or is point
symmetric, the shear center and centroid will coincide. 1In this case,
the purely torsional buckling load about the shear center axis is given
by (Ref., 3)

P = E U e e ——
? n, |¥ @
")
where A = cross-sectional area
Io = moment of inertia of the section about its shear center
= I +1I
G = shear modulus of elasticity
J = torsion constant
E = Young's modulus of elasticity
I = Warping constant of the section
L' = Effective length of member

Thus, for a cross section with two axes of symmetry there are three
values of the axial load. They are the flexural buckling loads about
the principal axes (Px and Py) and the purely torsional buckling load
Pg; then P¥ is the lowest value of the three loads. The lowest value
will depend on the shape of cross section and length of member. With
two axes of symmetry, there is mno interaction and the column f£ails in
either pure bending or pure twisting. Shapes in this category include
I - sections, Z-sections, and cruciform sections.

B. One Axis of Syvmmetry

If the cross section has one axis of symmetry, say the x axis,
the equation to obtain the buckling loads is (Ref. 3)

2 2 2
(P‘Py)%h (P-Px) (P-Pg) - P jl= 0 mmmmemmme—ceeem—aee- (2)
2 2
where Py = " EBlx Py = WZEIg , Yo = Io

@€ (L' A



2
and P, = A Gy + EU =
1o L2

There are again three solutions to equation (2), one of which is P1=P

and represents purely flexural buckling about the y axis. The other two
(P2,P3) are the roots of the quadratic term inside the square bracket e-
quated to zero. These two roots give torsional-flexural buckling loads.

P2,P3 =

2
where K = 1 -(X°>
Yo
|

Therefore, a singly symmetrical section such as an angle, channel, or hat
can buckle in either of two modes: by bending, or torsional-flexural
buckling. Which of these two actually occurs depends on the dimensions
and shape of the given section. Therefore, for singly symmetrical
sections P* is the lowest positive value of P1, P2 and P3.

(PytPx) + ‘\/V(P¢5+PX)2 ~4KPgPy | =-"===mm- (3

C. General Cross Section

In the general case of a column of thin-walled open cross section,
buckling will occur by a combination of torsion and bending. Purely
flexural or purely torsional buckling cannot occur. The equation (Ref. 3)
to obtain the buckling loads is:

2.2

Y02 (P-Py) - PPu5 (P-Py) = 0  =--(4)

ro (P-Py)(B-Px)(P-E,) - P

This equation reduces to

3 2
AP +AQP +AIP + Ap = 0 mm-mmmmmmomoememem oo e (5)
where
2 2
A3 = %‘ ( -y =%, ) #1
(o]

_ A 2 2
A, = T ( Py y0+Pyy0)-(Px+Py+P¢)
Ay = Py Pyt P P, + PP
Ao = _PXP}'Pd)

Solution of this cubic equation yields three roots, Py, Py, and P3. The
smallest positive value will be the critical load P¥.,



SECTION IV. INTERACTION ANALYSIS

The torsional-flexural buckling load, P*, obtained from Section IIT,
may, for short column lengths, be greater than the crippling load ob-
tained from Section II. However, the crippling load represents the upper
limit of the load-carrying capacity of the column (Fig, 2), Thus, for
members whose lengths are such that crippling and torsional-flexural
buckling interact, a means of interacting the two loads is desirable.

The well-known Johnson-Euler equation which provides a means of

interacting crippling and Euler buckling is usually given in the follow-
ing form (Ref. 1):

2 . 2

F L

Fce = Fes - c32 (‘“‘;) -------------------------- 6)
4w “E P

where Fge = column failing stress

Fcs = crippling stress for the given cross section
L' = effective length of member

p = radius of gyration

E = Young's modulus

This equation gives a parabolic curve starting from the crippling stress
at L'/p = 0, and becomes tangent to the Euler curve at a stress value
equal to one-~half the crippling stress., Figure 3 shows a plot of this
equation for aluminum alloy material for wvarious values of the crippling
stress,

Equation (6) can Ee written in terms of load as follows:

PCS ____________________________________ (7)
4 Pg

Pce = Pes
where Pce = column failing load
Pes = crippling load

2
Pe = JL—E%— = minimum Euler buckling load
@)

To provide a relatively simple means of coupling crippling and
torsional-flexural buckling, all that is required is to modify the
Johnson-Euler equation (7) to the following equation:

P .
Pc = PCS - C8 . meeemmemmeeme— e cmdmccmomm oo (8)
Lp*

By comparison of equations (7) and (8) it can be seen that the
only difference is that P, of equation (7) is replaced by P¥, where P¥
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ig the column failure load in either pure flexural buckling (Euler),
pure torsional buckling , or a combination of flexural and torsional
buckling, whichever is the minimum as determined from Section III. The

crippling Load P.g is determined from Section IT. With these two loads,

equation (8) can be solved for the critical load Pc.

This extension of,or modification to, the Johnson-Euler equation
should be applied only to members that are centrally loaded (loaded at
the centroid). 1If the load is eccentric, it then becomes a greater
problem to define the crippling load. The eccentric load can be trans-
ferred to the centroid with associated bending moments, but the cripp-
ling load then becomes a function not only of the axial load but also
of the bending moment. There are some methods available to determine
"bending-crippling" but they are limited, especially for bending about
two axes. For this reason, equation (8) should be used only for
centrally loaded members.

An example problem which illustrates the use of equation (8)
follows in Sectiomn V.

9/10



SECTION V., EXAMPLE PROBLEM

For the section shown below, plot P, versus L' using equation (8).
Also show Euler buckling curve and Johnson-Euler curve,
¢ - centroid

s - shear center

r— t=1/4(TYP,)

tJ Given PCS = 308,000 1bs.
2
Fp Xo A = 3,5 in.
(] 4
s X I, = 22.5 in.
6" 4q
Iy = 6.05 in.
— Xy = 2.74 in.
1 6
" G =4,0x 10 psi
fo~ 4 .
E = 10.5 x 10 psi
6 . 4
r = 38.4 in. J = ,073 in.
For calculation of P and P* refer to Section III B.
ﬂzEI 2 6 9
P, = X o= m 10,5 x 10°(22.5) = 2.331 x 10
T2 2 7 2
@ @) (L")
2 2 6 9
m
P =P =Py = " Ely 10.5x102(6.05) = 0.627 x210
e @) @
_ 2
Io = I+ Iy+ Ax,
2
I, = 22,5 + 6,05 +3.5 (2.74)
I,= 54,75 in.4
2
Pg =2 |gr+Er =
IO
T
@)
6 6 2 . 6
_ 3.5 (.073)(4 x 10 )+ 10.5 x 10 (38.4)x |=18,660+254.39 x 10
54.75 T Z ]
) ¢AD)

11
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Solution
shown in

- Is = 54,75 = 15,65
A 3.5
2 2
=1 - ( XO) = 1 - (207 ) = 0.55
r, 15.65
p3 = 1 [(P¢+PX) + .J(Pé-!-l’x)z - 4RP4P, }
2K

the least of P1, P2, P3

2
Peg - Pcs/4PE

It

[

2
Pcs = Pcg/4P%

of these equations for various values of L' gives the curves
Figure 4,

From these curves it can be seen that equation (8) provides a means
of transition from the crippling load at L' = 0 to torsional-flexural

buckling
flexural

at L' = 43, If L' > 43 the column will fail in pure torsional-
buckling. The Johnson-Euler curve and Euler curve are shown

for comparison,
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SECTION VI. CONCLUSIONS

The modified Johmson-Euler equation (Equation 8) is presented as a
method .of predicting failure loads of centrally loaded columns with
thinwalled open cross sections which fail by an interaction of crippling

and torsional-flexural buckling., Equation (8) should not be used with
eccentric loads.
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